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(Note: I’m not sure whether or not Tay.ai used neural nets)



(Recap) How do you actually 
train these things?

Gather 
labeled data

Find a ConvNet 
architecture

Minimize 
the loss

Roughly speaking:



(Recap) Training a convolutional 
neural network

• Split and preprocess your data 

• Choose your network architecture 

• Initialize the weights 

• Find a learning rate and regularization strength 

• Minimize the loss and monitor progress 

• Fiddle with knobs



(Recap) (1) Data preprocessing

Figure: Alex Krizhevsky

Subtract the mean

And randomly take a 224x224 sub-crop (dynamically)



(2) Choose your architecture
Toy example: one hidden layer of size 50

Slide: Andrej Karpathy



(3) Initialize your weights
Set the weights to small random numbers:

Slide: Andrej Karpathy

(matrix of small random numbers drawn from a Gaussian distribution)

Set the bias to zero (or small nonzero):

(the magnitude is important and this is not optimal — more on this later)



(3) Check that the loss is 
reasonable

Slide: Andrej Karpathy



(3) Check that the loss is 
reasonable

Slide: Andrej Karpathy



Slide: Andrej Karpathy

‘sgd’: vanilla gradient descent (no momentum etc)

learning_rate_decay = 1: constant learning rate

sample_batches = False (full gradient descent, no batches) 

Details:

epochs = 200: number of passes through the data

(4) Overfit a small portion of the data



Slide: Andrej Karpathy

100% accuracy on the training set (good)

(4) Overfit a small portion of the data



(4) Find a learning rate
Let’s start with small regularization and find the learning rate 
that makes the loss decrease:



(4) Find a learning rate



(4) Find a learning rate

Slide: Andrej Karpathy

Why is the accuracy 20%?Loss barely changes
(learning rate is too low or regularization too high)



(4) Find a learning rate

Slide: Andrej Karpathy

Learning rate: 1e6 — what could go wrong?

Loss is NaN —> learning rate is too high



(4) Find a learning rate
Learning rate: 1e6 — what could go wrong?

L

A weight somewhere in the network

Loss



(4) Find a learning rate

Slide: Andrej Karpathy

Learning rate: 3e-3

Loss is inf —> still too high
But now we know we should be searching the range 
[1e-5 … 1e-3]



(4) Find a learning rate

Slide: Andrej Karpathy

Coarse to fine search

First stage: only a few epochs (passes through the 
data) to get a rough idea

Second stage: longer running time, finer search

Tip: if loss > 3 * original loss, quit early  
(learning rate too high)



(4) Find a learning rate
Coarse to fine search

Slide: Andrej Karpathy



(4) Find a learning rate
Coarse to fine search

Slide: Andrej Karpathy

53%

Remember this is 
just a 2 layer neural 
net with 50 neurons



(4) Find a learning rate

Figure: Andrej Karpathy

For very small learning 
rates, the loss decreases 
linearly and slowly

(Why linearly?)

Larger learning rates tend 
to look more exponential

Normally, you don’t have the budget for lots of cross-
validation —> visualize as you go

Plot the loss



(4) Find a learning rate

Figure: Andrej Karpathy

Normally, you don’t have the budget for lots of cross-
validation —> visualize as you go

Typical training loss:

Why is it varying so rapidly?

The width of the curve is related 
to the batchsize — if too noisy, 
increase the batch size

Possibly too linear  
(learning rate too small)



Figure: Andrej Karpathy

(4) Find a learning rate



(4) Find a learning rate

Figure: Andrej Karpathy



http://lossfunctions.tumblr.com/



http://lossfunctions.tumblr.com/



http://lossfunctions.tumblr.com/



http://lossfunctions.tumblr.com/



http://lossfunctions.tumblr.com/





(4) Find a learning rate

Figure: Andrej Karpathy

Visualize the accuracy

Big gap: overfitting 
(increase regularization)

No gap: underfitting 
(increase model capacity, 
make layers bigger 
or decrease regularization)



(4) Find a learning rate

Figure: Andrej Karpathy

Visualize the weights

Noisy weights: possibly 
regularization not strong 
enough



(4) Find a learning rate

Figure: Alex Krizhevsky , Andrej Karpathy

Visualize the weights

Nice clean weights:  
training is proceeding well



Learning rate schedule

• Step down by a factor of 0.1 every 50,000  
mini-batches (used by SuperVision [Krizhevsky 2012]) 

• Decrease by a factor of 0.97 every epoch  
(used by GoogLeNet [Szegedy 2014]) 

• Scale by sqrt(1-t/max_t)  
(used by BVLC to re-implement GoogLeNet) 

• Scale by 1/t 
• Scale by exp(-t)

How do we change the learning rate over time?
Various choices:



Summary of things to fiddle
• Network architecture 
• Learning rate, decay schedule, update type 
• Regularization (L2, L1, maxnorm, dropout, …) 
• Loss function (softmax, SVM, …) 
• Weight initialization

Neural network 
parameters



Questions?



Tricks for making 
training work better



Momentum

Figure: Andrej Karpathy

“Lesson from the trenches”: well-tuned SGD with 
Momentum is very hard to beat for ConvNets

vi+1 = 0.9vi −α
∂L
∂θ

θi( )
θi+1 = θi + vi+1

Simple but powerful improvement:  
Give some “momentum” to the parameters

Learning rateDamping 
factor

Unfortunate nomenclature: the damping factor is called 
“momentum”



Momentum

Figure: Andrej Karpathy

Intuition behind momentum:

- Imagine a ball on the loss 
surface (its position is the 
current weight settings)

- Directions with lots of 
oscillations are damped

- Builds up speed in 
directions with a consistent 
gradient



“RMSprop”
On Geoff Hinton’s coursera lecture 6a, he 
mentioned various “tricks” including “rmsprop”

Idea: track the moving average of squared gradients

decay_rate is a hyper-parameter (typically 0.9, 0.99, or 0.999)


